$LOGOIMAGE

Trac Reports

The Trac reports module provides a simple, yet powerful reporting facility to present information about tickets in
the Trac database.

Rather than have its own report definition format, TracReports relies on standard SQL SELECT statements for
custom report definition.

Note: The report module is being phased out in its current form because it seriously limits the
ability of the Trac team to make adjustments to the underlying database schema. We believe that
the query module is a good replacement that provides more flexibility and better usability. While
there are certain reports that cannot yet be handled by the query module, we intend to further
enhance it so that at some point the reports module can be completely removed. This also means
that there will be no major enhancements to the report module anymore.

You can already completely replace the reports module by the query module simply by disabling
the former in trac.ini:

[components]
trac.ticket.report.* = disabled

This will make the query module the default handler for the ?View Tickets? navigation item. We
encourage you to try this configuration and report back what kind of features of reports you are
missing, if any.

A report consists of these basic parts:
¢ ID -- Unique (sequential) identifier
¢ Title -- Descriptive title
¢ Description -- A brief description of the report, in WikiFormatting text.

¢ Report Body -- List of results from report query, formatted according to the methods described below.
¢ Footer -- Links to alternative download formats for this report.

Changing Sort Order

Simple reports - ungrouped reports to be specific - can be changed to be sorted by any column simply by clicking
the column header.

If a column header is a hyperlink (red), click the column you would like to sort by. Clicking the same header again
reverses the order.

Alternative Download Formats

Aside from the default HTML view, reports can also be exported in a number of alternative formats. At the bottom
of the report page, you will find a list of available data formats. Click the desired link to download the alternative
report format.

Comma-delimited - CSV (Comma Separated Values)

Export the report as plain text, each row on its own line, columns separated by a single comma (','). Note: Carriage
returns, line feeds, and commas are stripped from column data to preserve the CSV structure.

$LOGOIMAGE
Tab-delimited

Like above, but uses tabs (\t) instead of comma.

RSS - XML Content Syndication

All reports support syndication using XML/RSS 2.0. To subscribe to an RSS feed, click the orange "XML' icon at
the bottom of the page. See TracRss for general information on RSS support in Trac.

Creating Custom Reports

Creating a custom report requires a comfortable knowledge of SOL.

A report is basically a single named SQL query, executed and presented by Trac. Reports can be viewed and
created from a custom SQL expression directly in from the web interface.

Typically, a report consists of a SELECT-expression from the 'ticket' table, using the available columns and sorting
the way you want it.

Ticket columns
The ticket table has the following columns:

oid

® time

¢ changetime
e component
® severity

® priority

® owner

® reporter
®cc

® version

¢ milestone
® status

¢ resolution
® summary

¢ description

See TracTickets for a detailed description of the column fields.
all active tickets, sorted by priority and time
Example: All active tickets, sorted by priority and time

SELECT id AS ticket, status, severity, priority, owner,
time as created, summary FROM ticket
WHERE status IN ('new', 'assigned', 'reopened')
ORDER BY priority, time

$LOGOIMAGE

Advanced Reports: Dynamic Variables

For more flexible reports, Trac supports the use of dynamic variables in report SQL statements. In short, dynamic
variables are special strings that are replaced by custom data before query execution.

Using Variables in a Query
The syntax for dynamic variables is simple, any upper case word beginning with '$' is considered a variable.
Example:

SELECT id AS ticket, summary FROM ticket WHERE priority='$PRIORITY'

To assign a value to SPRIORITY when viewing the report, you must define it as an argument in the report URL,
leaving out the the leading '$'".

Example:
http://projects.edgewall.com/trac/reports/14?PRIORITY=high

To use multiple variables, separate them with an '&'.

Example:

http://projects.edgewall.com/trac/reports/14?PRIORITY=high&SEVERITY=critical

Special/Constant? Variables

There is one magic dynamic variable to allow practical reports, its value automatically set without having to change
the URL.

¢ $USER -- Username of logged in user.
Example (List all tickets assigned to me):

SELECT id AS ticket,summary FROM ticket WHERE owner='SUSER'

Advanced Reports: Custom Formatting

Trac is also capable of more advanced reports, including custom layouts, result grouping and user-defined CSS
styles. To create such reports, we'll use specialized SQL statements to control the output of the Trac report engine.

Special Columns

To format reports, TracReports looks for 'magic' column names in the query result. These 'magic' names are
processed and affect the layout and style of the final report.

Automatically formatted columns

o ticket -- Ticket ID number. Becomes a hyperlink to that ticket.
¢ created, modified, date, time -- Format cell as a date and/or time.

$LOGOIMAGE

e description -- Ticket description field, parsed through the wiki engine.
Example:

SELECT id as ticket, created, status, summary FROM ticket

Custom formatting columns

Columns whose names begin and end with 2 underscores (Example: ___color__) are assumed to be formatting
hints, affecting the appearance of the row.

e __group___ -- Group results based on values in this column. Each group will have its own header and
table.

® __color__ -- Should be a numeric value ranging from 1 to 5 to select a pre-defined row color. Typically
used to color rows by issue priority.

e style_ -- A custom CSS style expression to use for the current row.

Example: List active tickets, grouped by milestone, colored by priority

SELECT p.value AS _ _color__,
t.milestone AS __group__,

(CASE owner WHEN 'daniel' THEN 'font-weight: bold; background: red;' ELSE '' END) AS __ style_ ,

t.id AS ticket, summary
FROM ticket t,enum p
WHERE t.status IN ('new', 'assigned', 'reopened')
AND p.name=t.priority AND p.type='priority'
ORDER BY t.milestone, p.value, t.severity, t.time

Note: A table join is used to match ticket priorities with their numeric representation from the enum table.

Changing layout of report rows

By default, all columns on each row are display on a single row in the HTML report, possibly formatted according
to the descriptions above. However, it's also possible to create multi-line report entries.

® column__ -- Break row after this. By appending an underscore ('_") to the column name, the remaining
columns will be be continued on a second line.

e _column_ -- Full row. By adding an underscore ('_") both at the beginning and the end of a column name,
the data will be shown on a separate row.

® _column -- Hide data. Prepending an underscore ('_") to a column name instructs Trac to hide the contents
from the HTML output. This is useful for information to be visible only if downloaded in other formats
(like CSV or RSS/XML).

Example: List active tickets, grouped by milestone, colored by priority, with description and multi-line layout

SELECT p.value AS __color__,
t.milestone AS __group_ ,
(CASE owner
WHEN 'daniel' THEN 'font-weight: bold; background: red;'

ELSE '' END) AS __style_ ,
t.id AS ticket, summary AS summary_, —-— ## Break line here
component,version, severity, milestone, status, owner,
time AS created, changetime AS modified, —— ## Dates are formatted
description AS _description_, —— ## Uses a full row

$LOGOIMAGE

changetime AS _changetime, reporter AS _reporter —- ## Hidden from HTML output
FROM ticket t,enum p
WHERE t.status IN ('new', 'assigned', 'reopened')

AND p.name=t.priority AND p.type='priority'
ORDER BY t.milestone, p.value, t.severity, t.time

Reporting on custom fields

If you have added custom fields to your tickets (experimental feature in v0.8, see TracTicketsCustomFields), you
can write a SQL query to cover them. You'll need to make a join on the ticket_custom table, but this isn't especially
easy.

If you have tickets in the database before you declare the extra fields in trac.ini, there will be no associated data in
the ticket_custom table. To get around this, use SQL's "LEFT OUTER JOIN" clauses. See
TracIniReportCustomFieldSample? for some examples.

See also: TracTickets, TracQuery, TracGuide

	tmpEgOhY_wikitopdf

